
54 The Delphi Magazine Issue 44

A Delphi Singleton Class: Update
by Marco Cantù and Hallvard Vassbotn

Marco Cantù Writes...
In the January issue there is an
interesting article by Hallvard
Vassbotn discussing the imple-
mentation of the Singleton pattern
in Delphi. I’m very happy to see dis-
cussion of design patterns in
Delphi, because they can really
help to define common coding
practices and teach programmers
to design classes before coding
them (something not so common
as one might think).

The reason for this letter is that I
see that in some articles on pat-
terns the implementation tends to
follow the C++ perspective a little
too much. The Object Pascal lan-
guage, luckily, offers us a few extra
features we can leverage to
improve the implementation of
this and other patterns.

In this specific case, Delphi’s
TObject class has a nice class
function, NewInstance, which is
automatically called by the system
every time a new object is created
by any call to a constructor. Over-
riding this function we can
customise the way an object
allocates its memory, but we can
also implement objects pooling
and other advanced techniques.
As a simple example, we can create
a Singleton class as shown in
Listing 1.

Creating one or more instances
of this class with the usual code:

S1 := TSingle.Create;

the system effectively creates only
one instance of the object, return-
ing the same single instance for
every new object being created.

The advantage of this code, com-
pared to the solution presented in
the article, is that this object can
be used like any other Delphi
object, with no special functions to
access to an instance. Of course
the second time NewInstance is
called it might raise an exception
to avoid this behaviour and imple-
ment a different type of Singleton.

It is important to notice that this
changes the nature of the Singleton
a little, as it is not seen any more as
a global object instantiated when
the program starts, but as a class
which disallows multiple inst-
ances, returning always the same

one on request. So I’m actually
implementing something different
than what was in the original arti-
cle, which is appropriate only in
some circumstances.

The code shown above doesn’t
solve the problem of the destruc-
tion of the single object. It is cer-
tainly possible to disable the
destructor, eventually raising an
exception, and let the program
clear the single instance in the
finalization part of the unit.

As an alternative, we can also
override the FreeInstance method,
so that calling Free over the aliases
of the object doesn’t destroy its
instance. Listing 2 shows an exten-
sion of this idea which implements
a reference counted object. This
class diverges from the original
design pattern presented in
Hallvard’s article, but you should
easily change the implementation
to suit your needs.

With this code behind the
scenes, a user of this class can call

type
TSingle = class (TObject)
public
class function NewInstance: TObject; override;

end;
implementation
var Instance: TObject = nil;
class function TSingle.NewInstance: TObject;
begin
if not Assigned (Instance) then
Instance := inherited NewInstance;

Result := Instance;
end;

type
TSingle = class (TObject)
public
class function NewInstance: TObject; override;
procedure FreeInstance; override;

end;
implementation
var
Instance: TObject = nil;
nCount: Integer = 0;

procedure TSingle.FreeInstance;
begin
Dec (nCount);
if nCount = 0 then begin
inherited FreeInstance;
Instance := nil;

end;
end;
class function TSingle.NewInstance: TObject;
begin
if not Assigned (Instance) then
Instance := inherited NewInstance;

Result := Instance;
Inc (nCount);

end;

➤ Above: Listing 1 ➤ Below: Listing 2

Following Hallvard Vassbotn’s article in the January 1999 issue,
Design Patterns, Marco Cantù and Hallvard have been discussing

the implementation of the Singleton pattern in Delphi between
them. The discussion is illuminating, not least because it points up the
fact that there will always be differing opinions on the best imple-
mentation technique for some aspects of our craft, even when the
protagonists are as skilled as Marco and Hallvard!
Chris Frizelle, Editor



56 The Delphi Magazine Issue 44

Create, Free and Destroy as usual,
but the effect of the calls will be
re-interpreted by the class itself. I
know this can be seen as a negative
effect, as the user of the class does-
n’t realise what’s happening, but
on the positive side the user of the
class doesn’t have to bother with
the specific role of the class and
can use it as any other class. If the
class instance is shared then this is
a problem of the class, not a prob-
lem of the class user!

Again, I don’t think this is always
a better solution, but I think it is
important to realise that there are
many different alternatives to
implement the idea of a class with a
single instance and the idea of a
Singleton. It will be up to you to
determine which implementation
is the best in each context.

As for the generic solution used
for building a base class, I have
some alternative coding here as
well. The code used by Hallvard to
register the derived classes seems
quite long and poses a burden on
the users of the class. I’ve had little
time to write down these notes, but
using the solution indicated above
and replacing the single global
instance with a list of instances,
stored in a TStringList and traced
by class name, seems to do the
trick. The code for the single base
class for a Singleton is in Listing 3.
Notice that you can inherit from
this class without having to do an
extra step: each class inherited by
TSingleton will simply create one
single shared instance in a com-
pletely transparent way.

For the destruction of the
objects I’ve decided to perform it
automatically when the program
terminates. The operation is done
by the FreeAll method, which sets
the Destroying flag to True so that
the FreeInstance method will actu-
ally destroy the objects.

I cannot guarantee this code is
perfect, but it works in the simple
test program I’ve built and you can
find it on this month’s disk.

Again, I was really happy to see
Hallvard’s article published and
I’m just offering a few more hints to
let programmers broaden the tools
they have to implement a common
problem.
Marco Cantù
www.marcocantu.com

Hallvard Vassbotn Replies...
To sum up my position, I agree that
the Singleton pattern can be imple-
mented in different and better
ways. The solution of using New
Instance and FreeInstance is
simple, but it has some major
drawbacks.

Firstly, it doesn’t prevent the
constructor from being called or
executed. It just prevents addi-
tional instances (ie memory) from
being allocated. This means that
there is no way for the Singleton
author to know when to initialize
or free resources (unless he or she
is using some kind of reference
counting).

Secondly, it has an illogical way
of obtaining a reference. For
instance, would it not look strange
if I was forced to call the construc-
tor of TScreen to get a reference to
the Screen Singleton?

Thirdly, after calling TSingleton.
Create to get the reference, the
user might be confused about the
need to call Free or not. Also, if he
or she is calling Free, the code
becomes more complex:

MyFormCount :=
Screen.FormCount;

versus:

with TScreen.Create do
try
MyFormCount := FormCount;

finally
Free;

end;

Because of this, users might skip
calling Free altogether, so any ref-
erence counting scheme will easily
break.

Even with a reference counting
scheme and users calling Create
and Free correctly, the Singleton
instance will not be persistent in
memory. It will be freed every time
the outer scope frees it.

The virtual NewInstance and
FreeInstance (in addition to the
Delphi 4-specific After Construc-
tion and BeforeDestruction) can
be very useful at times, but they
are not suited to implementing the
Singleton pattern, in my opinion.
Hallvard Vassbotn
hallvard@balder.no

And Finally...
Marco agreed that Hallvard had a
point in his response, but believes
his alternative solution has merit.
So, I guess it’s down to you, dear
reader, to make your choice!

unit singlebase;
interface
type
TSingleton = class (TObject)
public
class function NewInstance: TObject; override;
procedure FreeInstance; override;
class procedure FreeAll;

end;
implementation
uses
classes;

var
InstanceList: TStringList;
Destroying: Boolean = False;

class procedure TSingleton.FreeAll;
var
I: Integer;

begin
Destroying := True;
for I := 0 to InstanceList.Count - 1 do
InstanceList.Objects [I].Free;

end;

procedure TSingleton.FreeInstance;
begin
if Destroying then
inherited FreeInstance;

end;
class function TSingleton.NewInstance: TObject;
var
idx: Integer;

begin
idx := InstanceList.IndexOf (ClassName);
if idx >= 0 then
Result := InstanceList.Objects [idx]

else begin
Result := inherited NewInstance;
InstanceList.AddObject (ClassName, Result);

end;
end;
initialization
InstanceList := TStringList.Create;

finalization
TSingleton.FreeAll;
InstanceList.Free;

end.

➤ Listing 3


	Marco Cantù Writes...
	Hallvard Vassbotn Replies...
	And Finally...

